Skip to main content

Section 4.6 等值式

同一个真值表可以产生无穷多个等值式.
  • \(\displaystyle A=\neg (p \wedge q)\)
  • \(\displaystyle A=\neg \neg \neg (p \wedge q)\)
  • \(\displaystyle A=\neg p \vee \neg q\)
  • \(\displaystyle A =p \imp \neg q\)
  • \(\displaystyle \vdots\)
\(p\) q A
0 0 1
0 1 1
1 0 1
1 1 1

Exercises Exercises

1.

请判断下面两个公式是否等值?

\begin{equation*} \neg p \wedge \neg q \end{equation*}
\begin{equation*} \neg (p \vee q) \end{equation*}
Hint
\(p\) \(q\) \(\neg(p \vee q)\) \(\neg p \wedge \neg q\)
0 0 1 1
0 1 0 0
1 0 0 0
1 1 0 0
Solution

真值表相同,两者等值

\(\neg(p \vee q) \iff \neg p \wedge \neg q\)叫作德摩根律等值式

重要等值式.

A,B为任意公式

排中律等值式:

\begin{equation} A \vee \neg A \Iff 1 \tag{4.6.1} \end{equation}

蕴含等值式:

\begin{equation} A \imp B \Iff \neg A \vee B \tag{4.6.2} \end{equation}

德摩根律等值式:

\begin{equation} \neg (A \wedge B )\Iff \neg A \vee \neg B \tag{4.6.3} \end{equation}

德摩根律等值式:

\begin{equation} \neg (A \vee B )\Iff \neg A \wedge \neg B\tag{4.6.4} \end{equation}

分配律等值式:

\begin{equation} A \vee (B \wedge C)\Iff (A \vee B) \wedge (A \vee C) \tag{4.6.5} \end{equation}

分配律等值式:

\begin{equation} A \wedge (B \vee C)\Iff (A \wedge B) \vee (A \wedge C) \tag{4.6.6} \end{equation}