Skip to main content

Section 6.9 消去量词的方法

全称量词 \(\quad \forall \quad\)的展开式.
  • 设个体域\(D = \{ b_1,b_2,\cdots,b_n \} \)
  • \(\displaystyle \forall x A(x) = A(b_1) \wedge A(b_2) \wedge \cdots \wedge A(b_n) \)
存在量词 \(\quad \exists \quad\)的展开式.
  • 设个体域\(D = \{ b_1,b_2,\cdots,b_n \} \)
  • \(\displaystyle \exists x A(x) = A(b_1) \vee A(b_2) \vee \cdots \vee A(b_n) \)
请在解释\(\quad I \quad\)下求出以下公式的真值.
  1. \(\displaystyle \forall x ( F(x) \wedge G(x,a) ) \)
  2. \(\displaystyle \exists x ( F(f(x)) \wedge G(x,f(x)) ) \)
Answer 1
\begin{align*} \forall x (F(x) \wedge G(x,a) ) \amp \Iff \forall x (\bar{F}(x) \wedge \bar{G}(x,{\color{green}{2}}) ) \\ \amp \Iff (\bar{F}({\color{Blue}{2}}) \wedge \bar{G}({\color{Blue}{2}},{\color{green}{2}}) ) \wedge (\bar{F}({\color{Blue}{3}}) \wedge \bar{G}({\color{Blue}{3}},{\color{green}{2}}) ) \\ \amp \Iff (0 \wedge 1 ) \wedge (1 \wedge 1) \\ \amp \Iff 0 \end{align*}
Answer 2
\begin{align*} \amp \exists x ( F(f(x)) \wedge G(x,f(x)) ) \\ \amp \Iff (\bar{F} (\bar f(2)) \wedge \bar{G} (2, \bar{f}(2) )) \vee (\bar{F} (\bar f(3)) \wedge \bar{G} (3, \bar{f}(3) ))\\ \amp \Iff (\bar{F} (3) \wedge \bar{G} (2, 3 )) \vee (\bar{F} (2) \wedge \bar{G} (3, 2)) \\ \amp \Iff (1 \wedge 1) \vee (0 \wedge 1)\\ \amp \Iff 1 \vee 0 \\ \amp \Iff 1 \end{align*}